Part Number Hot Search : 
IRF450 RF6569SQ AZ23C2V7 SIR158DP UF600 FT232 752B0 SDR1185S
Product Description
Full Text Search
 

To Download IRLIB9343PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95745
DIGITAL AUDIO MOSFET
IRLIB9343PBF
Features
Advanced Process Technology l Key Parameters Optimized for Class-D Audio Amplifier Applications l Low RDSON for Improved Efficiency l Low Qg and Qsw for Better THD and Improved Efficiency l Low Qrr for Better THD and Lower EMI l 175C Operating Junction Temperature for Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability l Lead-Free
l
Key Parameters
VDS RDS(ON) typ. @ VGS = -10V RDS(ON) typ. @ VGS = -4.5V Qg typ. TJ max
D
-55 93 150 31 175
V m: m: nC C
G S
TO-220 Full-Pak
Description
This Digital Audio HEXFET(R) is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C PD @TC = 100C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current
Max.
-55 20 -14 -10 -60 33 20 0.26 -40 to + 175 10 (1.1)
Units
V A
c
Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Mounting Torque, 6-32 or M3 screw
W W/C C lbfyin (Nym)
Thermal Resistance
RJC RJA Junction-to-Case
f
Parameter
Typ.
--- ---
Max.
3.84 65
Units
C/W
Junction-to-Ambient
f
Notes through are on page 7
www.irf.com
1
8/23/04
IRLIB9343PBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs Qgd Qgodr td(on) tr td(off) tf Ciss Coss Crss Coss LD LS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance Internal Drain Inductance Internal Source Inductance
Min.
-55 --- --- --- -1.0 --- --- --- --- --- 5.3 --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. Max. Units
--- -52 93 150 --- -3.7 --- --- --- --- --- 31 7.1 8.5 15 9.5 24 21 9.5 660 160 72 280 4.5 7.5 --- --- 105 170 --- --- -2.0 -25 -100 100 --- 47 --- --- --- --- --- --- --- --- --- --- --- --- nH --- ns V
Conditions
VGS = 0V, ID = -250A
mV/C Reference to 25C, ID = -1mA m VGS = -10V, ID = -3.4A V VGS = -4.5V, ID VDS = VGS, ID = -250A
e = -2.7A e
mV/C A VDS = -55V, VGS = 0V nA S VDS = -55V, VGS = 0V, TJ = 125C VGS = -20V VGS = 20V VDS = -25V, ID = -14A VDS = -44V VGS = -10V ID = -14A See Fig. 6 and 19 VDD = -28V, VGS = -10VAe ID = -14A RG = 2.5 VGS = 0V VDS = -50V = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V Between lead, 6mm (0.25in.) from package and center of die contact
pF
Avalanche Characteristics
Parameter Typ. Max. Units mJ A mJ
EAS IAR EAR
Single Pulse Avalanche Energyd Avalanche CurrentAg Repetitive Avalanche Energy
g
--- 190 See Fig. 14, 15, 17a, 17b
Diode Characteristics
Parameter
IS @ TC = 25C Continuous Source Current ISM VSD trr Qrr (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min.
--- --- --- --- ---
Typ. Max. Units
--- --- --- 57 120 -14 A -60 -1.2 86 180 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G S D
p-n junction diode. TJ = 25C, IS = -14A, VGS = 0V TJ = 25C, IF = -14A di/dt = 100A/s
e
e
2
www.irf.com
IRLIB9343PBF
100
TOP VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V
100
TOP VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
10
BOTTOM
10
BOTTOM
1
1
-2.5V 60s PULSE WIDTH Tj = 175C
-2.5V
60s PULSE WIDTH Tj = 25C
10 100
0.1 0.1 1
0.1 0.1 1 10 100
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100.0
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
-I D, Drain-to-Source Current ()
T J = 25C TJ = 175C
10.0
ID = -14A VGS = -10V
1.5
1.0
1.0
VDS = -25V 60s PULSE WIDTH
0.1 0.0 5.0 10.0 15.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
-V GS, Gate-to-Source Voltage (V)
T J , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
20
10000
-V GS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
ID= -14A 16
C, Capacitance (pF)
VDS= -44V VDS= -28V VDS= -11V
1000
Ciss Coss
100
12
8
Crss
4
FOR TEST CIRCUIT SEE FIGURE 19
10 1 10 100
0 0 10 20 30 40 50 QG Total Gate Charge (nC)
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
www.irf.com
3
IRLIB9343PBF
100.0
1000
-I SD, Reverse Drain Current (A)
T J = 175C
10.0
-I D, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on)
100
100sec
10
1.0
T J = 25C
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1 1
Tc = 25C Tj = 175C Single Pulse
10
1msec 10msec
100
1000
-VSD, Source-to-Drain Voltage (V)
-VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
16
2.5
Fig 8. Maximum Safe Operating Area
-I D , Drain Current (A)
12
-VGS(th) Gate threshold Voltage (V)
2.0
8
ID = -250A
1.5
4
0 25 50 75 100 125 150 175
1.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Junction Temperature (C)
T J , Temperature ( C )
Fig 9. Maximum Drain Current vs. Case Temperature
10
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05
J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3
0.1
0.02 0.01
Ri (C/W) i (sec) 0.8737 0.000799 0.877 2.089 0.068578 2.593
1
2
0.01
Ci= i/Ri Ci= i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1 10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRLIB9343PBF
RDS(on), Drain-to -Source On Resistance ( m)
EAS, Single Pulse Avalanche Energy (mJ)
600
1000
ID = -14A
500
800
ID -5.0A -5.6A BOTTOM -10A
TOP
400
600
300
400
200
T J = 125C
100
200
0 4.0 6.0
T J = 25C
8.0 10.0
0 25 50 75 100 125 150 175
-VGS, Gate-to-Source Voltage (V)
Starting T J, Junction Temperature (C)
Fig 12. On-Resistance Vs. Gate Voltage
1000
Fig 13. Maximum Avalanche Energy Vs. Drain Current
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
Duty Cycle = Single Pulse
-Avalanche Current (A)
100
0.01
10
0.05 0.10
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
200
EAR , Avalanche Energy (mJ)
160
TOP Single Pulse BOTTOM 1% Duty Cycle ID = -10A
120
80
40
0 25 50 75 100 125 150 175
Starting T J , Junction Temperature (C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). t av = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
www.irf.com
5
IRLIB9343PBF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Inductor Curent Current
Ripple 5% ISD
*
Reverse Polarity of D.U.T for P-Channel
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET(R) Power MOSFETs
VDS
L
V DS
RG
-VGS -20V
RD
D.U.T
IAS
VDD A DRIVER
VGS RG -10V
D.U.T.
+
15V
Pulse Width 1 s Duty Factor 0.1 %
Fig 17a. Unclamped Inductive Test Circuit
I AS
Fig 18a. Switching Time Test Circuit
td(on) tr t d(off) tf
VGS 10%
tp V(BR)DSS
90% VDS
Fig 17b. Unclamped Inductive Waveforms
Fig 18b. Switching Time Waveforms
Id Vds Vgs
L DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Qgd
Qgodr
Fig 19a. Gate Charge Test Circuit
Fig 19b Gate Charge Waveform
6
-
tp
0.01
VDD
www.irf.com
IRLIB9343PBF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E XAMP L E : T H IS IS AN IR F I840G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " P AR T N U MB E R IN T E R N AT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE
IR F I840G 924K 34 32
Note: "P" in assembly line position indicates "Lead-Free"
D AT E COD E YE AR 9 = 1999 WE E K 24 L IN E K
TO-220 FullPak packages are not recommended for Surface Mount Application.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25C, L = 3.89mH, Pulse width 400s; duty cycle 2%. R is measured at TJ of approximately 90C. Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR's Web site.
RG = 25, IAS = -10A.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04
www.irf.com
7


▲Up To Search▲   

 
Price & Availability of IRLIB9343PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X